American Psychologist article: 1973 Voice to Skull Demonstration

Artificial microwave voice to skull transmission was successfully demonstrated by researcher Dr. Joseph Sharp in 1973, announced at a seminar from the University of Utah in 1974, and in the journal "American Psychologist" in the March, 1975 issue, article title "Microwaves and Behavior" by Dr. Don Justesen. USE YOUR BROWSER'S ZOOM FEATURE TO MAKE READING THE SCANS EASIER. (Try the “View” menu.)
265 Two-Way Transdermal Communication with the Brain. José M. R. Delgado, Vaino Lipponen, Gerhard Weiss, Francisco Del Peso, José Luís Montesárguido, and Robert McMahon

274 Intravenous Preparations for Self-Administration of Drugs by Animals. Ray Pickens and Travis Thompson

285 Methods and Procedures for Monitoring and Recording Blood Pressure. David T. Krausman

295 Some Interactive Computer Applications in a Physiological Psychology Laboratory. Richard A. Roemer

299 Minicomputers in the Signal-Averaging Laboratory. Emanuel Donchin and Earl Hefley

313 SENSORY INFORMATION SYSTEMS

315 Eye-Movement Measurement Techniques. Laurence R. Young and David Sheena

331 An Advanced Eye-Movement Measuring and Recording System. Richard A. Monty

349 The Laser Optometer and Some Implications for Behavioral Research. H. W. Lehmann and R. T. Hennessy

353 The Art of Tactile Communication. Carl E. Sherrick

361 CLINICAL AND APPLIED RESEARCH TECHNIQUES

363 6. The Use of a Clinical Computer Technique in a Medical Admitting System. James A. Johnson and Thomas A. William

371 Biofeedback Instrumentation: Soldering Closed the Loop. David A. Paskauskas

388 The Use of On-Line Computer Techniques in a Mental Health Admitting System. James A. Johnson and Thomas A. William

391 Microwaves and Behavior. Don R. Juster

402 Electroanesthesia and Electroencephalography. Clinton C. Brown

415 Direct Measurement of Glandular Function. James H. Geer

419 Radio Telemetry in Clinical Psychology and Related Areas. Donald R. Mitchell

426 Psychological Aspects of Aeronautical Flight Simulation. Matthew W. Hult and David C. Nadel

440 Supertankers: Simulators for the Study of Steering. W. A. Wagner

445 BUYER'S GUIDE

Product Directory
Manufacturers and Suppliers Directory

Subscriptions: Subscriptions are available on a calendar-year basis only (January through December). Nonmember rates are $17.50 per volume, $15.00 per issue. Write to Subscription Services, APA, Washington, D.C. Returns: All subscriptions must be returned to the publisher, where they receive them. Publishers: John Wiley & Sons, Inc., 605 Third Avenue, New York, N.Y. 10016. For information on reprints, contact APA, Subscription Services, 1866 Sixteenth Street, N.W., Washington, D.C. 20036. The American Psychologist is published monthly in one volume per year, 11 issues, by the American Psychological Association, Inc., 1200 17th Street, N.W., Washington, D.C. 20036. Printed in the U.S.A. Second-class postage paid at Washington, D.C., and additional mailing offices.
Vicror Frankenstein surgically fathered the famous fictional monster, but the fiend was conceptually mothered if not physically spawned by electricity in the form of lightning from the heavens. Perhaps unwittingly, perhaps intuitively, author Mary Shelley (1831) touched a deep truth in the maternal metaphor: Life did originate from electrical discharges into the primeval log. Indeed, life continues to preserve in all of its earthly forms from the most primitive cell to the most complex organism an elemental dependence on electrical phenomena. Understandably, the curiosity of the scientist about the electrophysiological goings-on of the earth's flora and fauna is shared by the layman. A large popular literature is accumulating and embraces experiments and anecdotes that range from the ostensibly respectable to the seemingly bizarre. Recently published texts by Tompkins and Bird (1972) and by Burr (1972, 1973) are not only exemplars of the literature but are rich sources of reference materials. One reads, for example, that plants have nervous systems that yield differing electrical signals on "stimulation" by kind or malevolent thoughts of human beings (Backster, 1968). One also reads that many Soviet scientists are giving credence and careful study to ESP and related phenomena, not in defiance of Marxist dictates of materialism but quite in keeping with them. The Soviets are championing earlier theoretical notions of George Lakhovsky (1934) to the effect that each plant or animal cell is an oscillatory system capable of transmitting and receiving high-frequency electromagnetic energy over a distance. While affirming that electrical events are in certain cases real, Backster notes that they are not consistent with the laws of physics. The author's research program is supported by the Veterans Administration and by U.S. Public Health Service Grant FD40560. Acknowledged in the preparation of the manuscript are E. L. Wike and C. L. Sheridan, for a critical reading; Kay Wahl, for artwork; and Lynn Bruetach and Virginia Florez, for typing. I also thank John Osepchuk of the Raytheon Corporation for his searching criticism of the manuscript; our opinions differ, his advice is appreciated.

Requests for reprints should be sent to Don R. Justesen, Laboratories of Experimental Neuropsychology, Veterans Administration Hospital, Kansas City, Missouri 64128. The author is also at the Department of Psychiatry, University Medical Center, Kansas City, Kansas 66103.
water, for example, in carbon-impregnated plastic and in crumpled sheets of aluminum foil. Even subjects who cannot hear microwaves when directly radiated by them can readily perceive clicking sounds when a piece of energy-absorbing material is interposed between the head and a radiator of pulsed microwave energy. Oddly enough, the mass of the interposed material does not seem to be too critical; I successively used smaller and smaller pieces of material as sonic transducers until it was necessary to impale tiny pieces on a toothpick, yet the clicking sounds induced in the material by microwave pulses were clearly audible to me.

The demonstration of sonic transduction of microwave energy by materials lacking in water lessens the likelihood that a thermohydraulic principle is operating in human perception of the energy. Nonetheless, some form of thermacoacoustic transduction probably underlies perception. If so, it is clear that simple heating as such is not a sufficient basis for the Frey effect; the requirement for pulsing of radiations appears to implicate a thermodynamic principle. Frey and Messenger (1973) demonstrated and Guy, Chou, Lin, and Christensen (1975) confirmed that a microwave pulse with a slow rise time is ineffective in producing an auditory response; only if the rise time is short, resulting in effect in a square wave with respect to the leading edge of the envelope of radiated radio-frequency energy, does the auditory response occur. Thus, the rate of change (the first derivative) of the wave form of the pulse is a critical factor in perception. Given a thermodynamic interpretation, it would follow that information can be encoded in the energy and "communicated" to the "listener." Communication has in fact been demonstrated. A Guy (Note 1), a skilled telegrapher, arranged for his father, a retired railroad telegrapher, to operate a key, each closure and opening of which resulted in radiation of a pulse of microwave energy. By directing the radiations at his own head, complex messages via the Continental Morse Code were readily received by Guy. Sharp and Grove (Note 2) found that appropriate modulation of microwave energy can result in direct "wireless" and "receiverless" communication of speech. They recorded by voice on tape each of the single-syllable words for digits between 1 and 10. The electrical sines-wave analogs of each word were then processed so that each time a sines wave crossed zero reference in the negative direction, a brief pulse of microwave energy was triggered. By radiating themselves with these "voice-modulated" microwaves, Sharp and Grove were readily able to hear, identify, and distinguish among the 9 words. The sounds heard were not Unlike those emitted by persons with artificial larynges. Communication of more complex words and of sentences was not attempted because the averaged densities of energy required to transmit longer messages would approach the current 10 mW/cm² limit of safe exposure. The capability of communicating directly with a human being by "receiverless radio" has obvious potentials both within and without the clinic. But the hotly debated and unresolved question of how much microwave radiation a human being can safely be exposed to will probably forestall applications within the near future.

The U.S. limit of 10 mW/cm² is actually an order of magnitude below the density that many investigators believe to be near the threshold for thermal hazards (Schwan, 1970). There are two camps of investigators in the United States, however, who believe that the limit is not sufficiently stringent. In the first camp of conservatives are those who accept the Soviet's belief that there are hazardous effects unrelated to heating from chronic exposures to fields of low density (< 1 mW/cm²); some agree with Milton Zaret (1974), a New York ophthalmologist, who holds that severely debilitating subcapsular lesions of the eyes may develop years, even decades, after exposure to weak microwave fields. Others tend to reject the notion that weak microwave fields produce this anomalous cataract, because of lack of substantiating evidence from the clinic or the laboratory (Appleton & Hirsch, 1975). But these conservatives are possessed of a vague unease simply because the Soviet's limit of continuous permissible exposure is three orders of magnitude below that of the United States.³

³The Soviet's exposure limit of 10 mW/cm² is three orders of magnitude below the exposure limit in the United States, but a different, that is, emission, limit holds for microwave ovens purchased for use in the American kitchen. In the United States at the present time, a newly purchased microwave oven may not emit radiation at a density greater than 5 mW/cm² as measured at a distance of 5 cm from the oven's surface. A user who stands 1 m from an oven that emits energy at the maximum permissible quantity would probably be exposed to a density of only a few microwatts per square centimeter—this is because electromagnetic energy when radiated from a point source attenuates markedly as it propagates through space.
Below image illustrates Dr. Joseph Sharp's voice to skull modulation method described above in the American Psychologist journal article:

"...each time the sine wave crossed the zero reference in the negative direction ..."

VOICE WAVEFORM

RADAR-LIKE MICROWAVE PULSES

VOICE CONVERSION TO PULSES, AS USED IN THE SUCCESSFUL DEMONSTRATION OF MICROWAVE VOICE-TO-SKULL TECHNOLOGY IN 1973 BY DR. JOSEPH SHARP. THIS IS NOT CLASSIFIED.
Below image shows a way to demonstrate Dr. Joseph Sharp's voice to skull modulation method, converting speech or music to a string of pulses. In Sharp's experiment, the pulses were microwave signals, similar to radar, but the demo circuit below puts out simple DC pulses which can be fed to a speaker. It emits no microwave signals and is totally safe.

Using a 555 chip tachometer driver circuit to simulate Dr. Joseph Sharp's microwave voice to skull voice-to-pulses conversion method.
Below image shows current day microwave hearing weapon using the same principle as Sharp's voice to skull:

Below image shows current day microwave hearing weapon using the same principle as Sharp's voice to skull:

... it is possible to raise the auditory sensation to the "discomfort level"...

... measurements were taken and the required pulse parameters were confirmed ...

Objective of Phase Effort

The main goal of the Phase I project was to design and build a broadband prototype of a temporary personnel incapacitation system called MEDUSA (Mob Excess Deterrent Using Silent Audio). This non-lethal weapon is based on the well-established microwave auditory effect (MAE). MAE results in a strong sound sensation in the human head when it is irradiated with specifically selected microwave pulses of low energy. Through the combination of pulse parameters and pulse power, it is possible to raise the auditory sensation to the "discomfort" level, deterring personnel from entering a protected perimeter or, if necessary, temporarily incapacitating particular individuals.

Summary of Results from the Phase I Effort

The major results of the Phase I effort were that - An operating frequency was chosen - Hardware requirements were established (commercial magnetron, high-voltage pulse former) - Hardware was designed and built - Power measurements were taken and the required pulse parameters confirmed - Experimental evidence of MAE was observed
voice to skull devices

Definition/Scope:

Nonlethal weapon which includes (1) a neuro-electromagnetic device which uses microwave transmission of sound into the skull of persons or animals by way of pulse-modulated microwave radiation; and (2) a silent sound device which can transmit sound into the skull of person or animals. NOTE: The sound modulation may be voice or audio subliminal messages. One application of V2K is use as an electronic scarecrow to frighten birds in the vicinity of airports.

Acronym:

V2K

Broader Terms:

nonlethal weapons

Send your comments to: CALL Thesaurus

Feedback to Web Team

This page is in compliance with Section 508 of the Rehabilitation act. If you have any access problems, please contact the webmaster.